skip to main content


Search for: All records

Creators/Authors contains: "Kostinski, Alexander B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Record-breaking statistics are combined here with ageographic mode of exploration to introduce a record-breaking map. Weexamine time series of sea surface temperature (SST) values and show thathigh SST records have been broken far more frequently than the expected rate for a trend-free random variable (TFRV) over the vast majority of oceans (83 % of the grid cells). This, together with the asymmetry between highand low records and their deviation from a TFRV, indicates SST warming overmost oceans, obtained using a distribution-independent, robust, andsimple-to-use method. The spatial patterns of this warming are coherent andreveal islands of cooling, such as the “cold blob” in the North Atlantic and a surprising elliptical area in the Southern Ocean, near the Ross Sea gyre, not previously reported. The method was also applied to evaluate a global climate model (GCM), which reproduced the observed records during the study period. The distribution of records from the GCM pre-industrial (PI) controlrun samples was similar to the one from a TFRV, suggesting that thecontribution of a suitably constrained internal variability to the observedrecord-breaking trends is negligible. Future forecasts show striking SSTtrends, with even more frequent high records and less frequent low records. 
    more » « less
  2. Abstract Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-to-night modulation of bubble-bursting dynamics as a possible cause of the SSA cycle. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. The reason why ice nucleation is more efficient by contact nucleation than by immersion nucleation has been elusive for over half a century. Six proposed mechanisms are summarized in this study. Among them, the pressure perturbation hypothesis, which arose from recent experiments, can qualitatively explain nearly all existing results relevant to contact nucleation. To explore the plausibility of this hypothesis in a more quantitative fashion and to guide future investigations, this study assessed the magnitude of pressure perturbation needed to cause contact nucleation and the associated spatial scales. The pressure perturbations needed were estimated using measured contact nucleation efficiencies for illite and kaolinite, obtained from previous experiments, and immersion freezing temperatures, obtained from well-established parameterizations. Pressure perturbations were obtained by assuming a constant pressure perturbation or a Gaussian distribution of the pressure perturbation. The magnitudes of the pressure perturbations needed were found to be physically reasonable, being achievable through possible mechanisms, including bubble formation and breakup, Laplace pressure arising from the distorted contact line, and shear. The pressure perturbation hypothesis provides a physically based and experimentally constrainable foundation for parameterizing contact nucleation that may be useful in future cloud-resolving models. 
    more » « less
  6. Abstract

    Data collected with a holographic instrument [Holographic Detector for Clouds (HOLODEC)] on board the High-Performance Instrumented Airborne Platform for Environmental Research Gulfstream-V (HIAPER GV) aircraft from marine stratocumulus clouds during the Cloud System Evolution in the Trades (CSET) field project are examined for spatial uniformity. During one flight leg at 1190 m altitude, 1816 consecutive holograms were taken, which were approximately 40 m apart with individual hologram dimensions of 1.16 cm × 0.68 cm × 12.0 cm and with droplet concentrations of up to 500 cm−3. Unlike earlier studies, minimally intrusive data processing (e.g., bypassing calculation of number concentrations, binning, and parametric fitting) is used to test for spatial uniformity of clouds on intra- and interhologram spatial scales (a few centimeters and 40 m, respectively). As a means to test this, measured droplet count fluctuations are normalized with the expected standard deviation from theoretical Poisson distributions, which signifies randomness. Despite the absence of trends in the mean concentration, it is found that the null hypothesis of spatial uniformity on both spatial scales can be rejected with compelling statistical confidence. Monte Carlo simulations suggest that weak clustering explains this signature. These findings also hold for size-resolved analysis but with less certainty. Clustering of droplets caused by, for example, entrainment and turbulence, is size dependent and is likely to influence key processes such as droplet growth and thus cloud lifetime.

     
    more » « less